Why Molten Iron Just Isn't Attracted to Rare Earth Magnets
- Share
- From
- TheBackyardScientist
- publisher
- Vector Magnets
- Issue Time
- Aug 5,2016
Summary
Why Molten Iron Just Isn't Attracted to Rare Earth Magnets
For his latest experiment, he got his hands on a large rare earth magnet, and then used thermite to melt down iron to pour down on and near the magnet. The results? Less than exciting. The molten iron doesn't react to the magnet—it's only when the iron has cooled that anything seems to happen.
But when iron hits its Curie point (1,043° Kelvin, or 1,417.73° Fahrenheit), the atoms are now moving around quickly enough that their magnetic spin is no longer stable—the magnetic poles are swinging around every which way. It should be noted this happens well before the iron actually enters its liquid state—iron's melting point is 2,800° F. But ironworkers will actually use this the Curie point to test when the iron is ready to be molded—once it stops reacting to a magnet, you have a very good sense of how hot it is.
Regardless, the Curie point is why when a stream of molten iron is poured directly next to a magnet with tremendous amounts of pull, the iron falls in a straight line instead of being pulled towards the magnet. But once the molten magnet cools back down below the Curie point, the magnet has no problem picking up the random blobs of metal.